
ELECTROCARDIOGRAM ABNORMALITY DETECTION BASED ON MULTIPLE MODELS

Gangyi Zhu, Congrong Guan, Ke Tan, Peidong Wang

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

1. ABSTRACT

This paper introduces a study of applying three indepen-
dent machine learning approaches to detect abnormal elec-
trocardiogram (ECG) beats from the MIT-BIH arrhythmia
database [1]. The ECG signals are classified into two differ-
ent classes - normal and abnormal - based on the statistical
analysis of the features extracted by discrete wavelet trans-
form (DWT). The models we utilize are Support Vector
Machine (SVM), Feedforward Neural Network (FNN) and
Elman Recurrent Neural Network (Elman RNN). In this pa-
per, we explain the frameworks of these three models and test
their performance on our DWT features.

Index Terms— ECG Abnormity, Discrete Wavelet Trans-
form, Support Vector Machine, Feedforward Neural Network,
Elman Recurrent Neural Network

2. INTRODUCTION

Electrocardiogram (ECG) records the electrical activity of the
heart which shows the regular contraction and relaxation of
heart muscle. The information provided by electrocardiog-
raphy is significantly valuable to assess the functionalities of
the heart and cardiovascular system. The patient can receive
appropriate treatment if heart abnormalities can be detected
in the early stage. Therefore, numerous works and methods
are proposed to detect heart diseases [2, 3]. Here we adopt
three models in our paper as well as a discrete wavelet trans-
form method to decompose the ECG signals from MIT-BIT
arrhythmia database containing 48 files each of which records
30 minutes of ECG signals. The process can be generally di-
vided into three procedures: 1) beat detection; 2) feature ex-
traction; 3) classification.

The wavelet transform (WT) has been widely applied to
many signal processing tasks [2, 3]. Since it can manipu-
late data in compressed parameters named features instead of
the huge volume of the raw data, we can represent the ECG
signals as a few parameters. Therefore, WT can significantly
enhance the efficiency of the following classification step.

The first classification model is support vector machines
(SVM) [4]. The second approach is Feedforward Neural Net-
work (FNN) [5]. And Elman Recurrent Neural Networks (El-

man RNN) [6] is the third classification approach adopted in
our paper.

The result shows we are able to detect heart beat abnor-
malities with good accuracy.

The following paper is organized as follows. In section 3,
we discuss the approach of the discrete wavelet transform to
represent the ECG signals. From section 4 - 6, three adopted
models are introduced. In section 7 and 8 , the experiment
results are presented and the conclusion is drawn.

3. FEATURE EXTRACTION USING DISCRETE
WAVELET TRANSFORM

Given that ECG signals can be viewed as an overlap of mul-
tiple structures occurring on different time scales at different
time spots, we adopt wavelet analysis to isolate these struc-
tures of different time scales because of its ability to process
non-stationary signals. According to the work of Güler et
al. [7], the number of decomposition levels is set as 4. There-
fore, the original ECG signals are decomposed into four sub-
bands D1-D4, and one approximation A4. And the wavelet
coefficients are computed using the Daubechies wavelet of or-
der 2. The wavelet coefficients were calculated by a Python
package called PyDev [8].

After the features are calculated, the following statistic
analysis are performed on all subbands D1-D4 and A4 [7]:
1. Mean of the absolute values of the coefficients in each
subband;
2. Average power of the wavelet coefficients in each subband;
3. Standard deviation of the coefficients in each subband;
4. Ratio of the absolute mean values of adjacent subbands.

All these statistical features for D1-D4 and A4 serve as
input to all the following three classifiers.

4. CLASSIFICATION OF SVM

4.1. Support Vector Machine

The SVM is designed for binary classification for linear di-
vision of feature space but can be extended to multiple class
using methods like one-against-one, one-against-all and fuzzy
decision and non-linear separation using kernel trick to map-
ping inputs to high-dimensional feature space. The SVM



classifier is defined as following:

f(x) = sgn(wTφ(x) + b) (1)

where φ(x) is the kernel function and wT is the vector of
feature space, and b is a scalar. sgn(x) is the decision function
separate the results into -1 and +1. Thus creating linearly
hyperplanes. The optimal one can be calculated as follows:

minJ(w, b, ξi) =
1

2
wTw + γ

1

2

n∑
i=1

ξi (2)

subject to:

yi(minJ(w, b) =
1

2
wTw) ≥ 1 − ξi (3)

ξi ≥ 0 (4)

parameter ξi is slack variables if the training data are nonlin-
early separable and γ is the tradeoff between maximum mar-
gin and the minimum classification error. The optimization
problem of (2) is a convex quadratic program. The quadratic
programming problem of soft margin SVM can be expressed
in the dual form as follows:

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyj(φ(xi)
Tφ(xj))αiαj (5)

subject to:
0 ≤ αi ≤ γ (6)
n∑
i=1

yiαi = 0 (7)

By solving the equation above, we can find the αi coefficients.
And by substituting these coefficients to the following equa-
tion we can obtain the parameters of the classifier:

w =

n∑
i=1

αiyiφ(xi) (8)

4.2. Sequential Minimal Optimization

To solve the quadratic programming problem, Sequential
minimal optimization (SMO) method is introduced in this
paper. SMO is an iterative algorithm that breaks this prob-
lem into a series of smallest possible sub-problems. For the
SVM constraints the smallest possible problem involves two
Lagrange multipliers as follows:

0 ≤ α1, α2 ≤ γ (9)

y1α1 + y2α2 = 0 (10)

The algorithm proceeds as follows:
1. Find a Lagrange multiplier that satisfies the Karush-Kuhn-
Tucher (KKT) conditions.
2. Pick a second multiplier and optimize the pair .
3. Repeat steps 1 and 2 until convergence.
When all Lagrange multiplier found, the problem has been
solved.

5. CLASSIFICATION USING FEEDFORWARD
NEURAL NETWORK

Backpropagation (BP) Neural Network [9] is a multi-layer
feedforward network trained by error backpropagation algo-
rithm. Due to its good generalization performance against
many machine learning problems, it has been popular in pat-
tern classification and other related areas.

5.1. The Architecture of Feedforward Neural Network

A regular BP neural network [10] has an input layer, an output
layer, and one or more hidden layers. Each layer contains one
or more neurons and there are synaptic connections between
every two adjacent layers. Figure 1 shows the structure of a
neuron and the architecture of a six-layer neural network.

Fig. 1. Left: the structure of a neuron; right: the architecture
of a six-layer neural network

A neuron is a nonlinear system with multiple inputs and a
single output. Its output is given by y = f(

∑n
i=0 wixi) =

f(wTx), where x0 = 1 and f(·) is a nonlinear function
called activation function. Sigmoid function is typically used
in classification task.

f(z) =
1

1 + e−βz
(11)

Assume the network hasm hidden layers and n1, n2, . . . ,
nm within each hidden layer. The input pattern x is a p-
dimensional vector. Its synaptic weights and activation func-
tions are respectively W1,W2, . . . ,Wm+1 and f1, f2, . . . ,
fm+1. The inputs of hidden layers are x1,x2, . . . ,xm+1. The
real output y and the desired output d are q-dimensional vec-
tors. Based on above denotation, the outputs of each layer
are:





x1(j) = f1(

p∑
i=0

W1(i, j)x(i)), j = 1, 2, . . . , p

x2(j) = f2(

n1∑
i=0

W2(i, j)x1(i)), j = 1, 2, . . . , n1

. . .

xm(j) = fm(

nm−1∑
i=0

Wm(i, j)xm−1(i)), j = 1, 2, . . . , nm−1

y(j) = fm+1(

nm∑
i=0

Wm+1(i, j)xm(i)), j = 1, 2, . . . , nm

(12)

5.2. Error Backpropagation Algorithm

The object of error backpropagation algorithm is to minimize
the cost function:

J(W, θ) =
1

2

q∑
i=1

(d(i) − y(i))2 (13)

According to the gradiend descent method and the chain
rule, weight update for the output layer is as follows:

∆Wm+1(i, j) = ηδm+1(j)xm(i) (14)

where

δm+1(j) = (d(j) − y(j))f ′m+1 (15)

We can easily obtain the weight update for other layers
following the same rules. As we can see, the order of weight
update computation is from higher layers through lower lay-
ers. That is why the learning algorithm is called error back-
propagation [10].

6. CLASSIFICATION USING ELMAN RECURRENT
NEURAL NETWORKS (ELMAN RNNS)

There are many forms of Recurrent Neural Networks (RNNs).
One of the simplest ones is the Elman RNN [11].

6.1. The Framework of Elman RNN

The difference between Elman RNNs and Feedforward Neu-
ral Networks is that in a Elman RNN, the outputs of a hidden
layer are copied to a special layer called context layer. Then
during the next forward process, the values stored in the con-
text layer are used as additional inputs to the hidden layer
[11].

Fig. 2. Framework of a classical Elman RNN.

6.2. The Weights Update Method

The weights update method for Elman RNNs [5] is quite sim-
ilar to FNNs. After the error is back-propagated to the hidden
layer, it is used to update both the weights between hidden
layer and input layer and the weights between hidden layer
and context layer.

In addition to stochastic gradient descent, there are many
other weights update methods. A prior work on ECG clas-
sification [6] used LevenbergMarquardt algorithm to train a
Elman RNN and yielded a good classification result.

7. EXPERIMENTAL RESULTS

7.1. Results of SVM

We apply the SVM based on the polynomial kernel function.
There are 187200 instances for training data set and each
instance has 38 features. Then we use 5-fold cross validation
to choose both the best cost C and γ parameters in the kernel
function. First randomly choose 50% of the training set as
the cross validation set. Then divide the whole set into 5
subsets of equal size. Each subset is then used as the test set
in turn with the remaining 4 subsets as the training sets of
the classifier. We select C and in the exponential sequence
C = 2−4, 2−3..., 22 with γ being the default value 20. The
results are shown in the first three columns of table 1. It is
found that the performance is optimal when C is 2−2. Then
we fix C parameter as 2−2 and find the optimal γ parameter
in this model. The results are shown in the last three columns
of table 1.

Table 1. Cross validation accuracy with C and γ parameter
C γ accuracy(%) C γ accuracy(%)

2−4 20 62.15 2−2 2−4 23.41
2−3 20 66.20 2−2 2−3 49.77
2−2 20 67.31 2−2 2−2 76.97
2−1 20 67.13 2−2 2−1 70.58
20 20 66.77 2−2 20 66.77
21 20 66.49 2−2 21 66.49
22 20 66.33 2−2 22 62.29



Then we use the optimal parameters found above to test
the accuracy in the test set. The test set has 62400 instances
and the accuracy of the model is 66.67%.

7.2. Results of FNN

We use a four-layer BP neural network including two hid-
den layers with 16 neurons in each hidden layer to handle
this classification task. The inputs of the model are 38-
dimensional feature vectors and the output layer has one
single neuron. The classification threshold of the output neu-
ron is 0.5, which means the input pattern is classified to Class
“N” (Normal) if y > 0.5 and Class “A” (Abnormal) other-
wise. We use sigmoid function with β = 1 as the activation
function for all neurons. The whole model was implemented
in C++ and no machine learning toolkit was used.

To make sure the convergence of the training process, a
self-adaptive learning rate is set up. The initial value of learn-
ing rate η is 0.0005, and we reset η = η × 0.8 if the value of
the cost function increases in the process.

The classification accuracy on training set with different
epochs is shown in figure 3.

Fig. 3. The classification accuracy on training set with differ-
ent epochs

The classification accuracy is 83.64% (after 2000 epochs)
on training set and on test set is 69.45%.

7.3. Results of Elman RNN

The experimental settings of Elman RNN are similar to the
FNN. There are four layers in the network. Input layer is
consisted of 38 nodes. The numbers of nodes in the hidden
layer and the context layer are both 32. There is only one
node in the output layer. The classification threshold of the
output neuron is also 0.5 and the same sigmoid function is
used. The whole model was implemented in Python and no
machine learning toolkit was used.

An adaptive training method is also used in the training
process of the Elman RNN. The initial learning rate is 0.02.
For each epoch, the training accuracies of both current state

and the previous state are stored. If the accuracy of current
state is lower than the previous state, the training process will
roll back to the previous state and the learning rate will be
divided by 2.

The training process will stop if the accuracy improve-
ment between current state and the previous state is not larger
than 0.001% or the learning rate becomes smaller than 10−20.

The accuracies at different epochs are shown in figure 4.

Fig. 4. The accuracies at different epochs on training set.

The figures show that with the increase of epochs, the per-
formance on both the training set and the test set increase.
The final accuracy is 72.98% on the training set and 63.98%
on test set. Multiple experiments with the same settings are
conducted and we get similar results.

One thing worths noticing is that as the accuracies on the
training set increases, the accuracies on the test set may not
increase correspondingly. This phenomenon is common be-
cause the accuracies on the training set and the test set are
usually not linearly correlated.

8. CONCLUSION

In this paper, we proposed three different models for classify-
ing ECG signal segmentations: SVM, FNN, Elman RNN. The
experimental results in figure 5 show that SVM and FNN have
higher classification accuracy on test set than Elman RNN.
In addition, all three models outperform the baseline model.
However, further research on the models is demanded since
the classification performance can be impacted by model con-
figuration, such as parameter setting, selection of activation
function, etc.



Fig. 5. Results Comparison Among Three Models and Base-
line Model on test set

9. REFERENCES

[1] “The mit-bih arrhythmia database,” http:
//physionet.ph.biu.ac.il/physiobank/
database/mitdb, Accessed: 10-30-2015.

[2] SC Saxena, Vinod Kumar, and ST Hamde, “Feature
extraction from ecg signals using wavelet transforms for
disease diagnostics,” International Journal of Systems
Science, vol. 33, no. 13, pp. 1073–1085, 2002.

[3] Paul Addison, James N Watson, Gareth R Clegg,
Michael Holzer, Fritz Sterz, and Colin E Robertson,
“Evaluating arrhythmias in ecg signals using wavelet
transforms.,” IEEE Engineering in Medicine and Bi-
ology Magazine, vol. 19, no. 5, pp. 104–109, 2000.

[4] Narendra Kohli, Nishchal K Verma, and Abhishek Roy,
“Svm based methods for arrhythmia classification in
ecg,” in Computer and Communication Technology (IC-
CCT), 2010 International Conference on. IEEE, 2010,
pp. 486–490.

[5] Mikael Boden, “A guide to recurrent neural networks
and backpropagation,” 2001.

[6] Elif Derya Übeyli, “Combining recurrent neural net-
works with eigenvector methods for classification of ecg
beats,” Digital Signal Processing, vol. 19, no. 2, pp.
320–329, 2009.

[7] İnan Güler and Elif Derya Übeylı, “Ecg beat classifier
designed by combined neural network model,” Pattern
recognition, vol. 38, no. 2, pp. 199–208, 2005.

[8] “Pydev,” http://www.pydev.org, Accessed: 10-
30-2015.

[9] Robert Hecht-Nielsen, “Theory of the backpropagation
neural network,” in Neural Networks, 1989. IJCNN., In-
ternational Joint Conference on. IEEE, 1989, pp. 593–
605.

[10] Richard O Duda, Peter E Hart, and David G Stork, Pat-
tern classification, John Wiley & Sons, 2012.

[11] Jeffrey L Elman, “Finding structure in time,” Cognitive
science, vol. 14, no. 2, pp. 179–211, 1990.


